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appear to converge, the projections of the Fourier Transforms of this
divergent series onto 1m| < are converging both in the L? norm
and the maximum norm.
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PERRON-FROBENIUS THEORY AND THE ZEROS
OF POLYNOMIALS

HERBERT S. WILF!

1. Introduction. Our purpose here is to show that many of the
classical root location theorems for polynomial equations, normally
derived by the methods of complex analysis, can be obtained easily,
and in a purely algebraic manner, from the Perron-Frobenius theo-
rems on matrices with nonnegative elements. An important result of
this approach is a “minimax” principle which gives precisely the
largest root of an equation which dominates the given one. It will be
seen that from this principle the above-mentioned location theorems
follow, and can be sharpened almost at will. Finally some applica-
tions to the theory of orthogonal polynomials will be made, the result
again being a minimax principle for the largest zero from which two-
sided bounds can be deduced by specialization.

2. Cauchy’s Theorem. Let C be an nX# complex matrix, and let
Ct+ be given by

(1) €y = | Cyl, Gy =1, ,n).

A lemma of Wielandt [1] asserts that if C* is irreducible, ¥ is any
eigenvalue of C, and r is the largest real eigenvalue of C*, then

7] =r.
Let
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(2) flg) = a0+ a1z + - - - + a,5"
where the a; are arbitrary complex numbers except that
(3) apd, 7= 0.

The companion matrix of f(z) is

(a1 - o)
4 @ G
(4) C = 1 0 0 --- {]
0 0 1 0
while
(| Gz An—2 ao) )
dn dn ﬁTn
1 0 0
(5) ct= 0
0 0 ---10 |

It is easy to see that (3) implies the irreducibility of (5). Hence
all the eigenvalues of C (zeros of f(z)) are dominated by the largest
real eigenvalue of C*, namely the real positive root of

6 fe@) =—|a] = |a|z =+ = |aua]st + | 0] 2

The result is due to Cauchy [2]. Applying the Perron-Frobenius
theorem to the matrix Ct yields the following information about the
zeros of (6):

TaEOREM 1. The polynomial f.(z) of (6) has a zero r which is real,
positive, simple, and which is not exceeded by the modulus of any other
gero of f.(2). If precisely h zeros of f.(z) have modulus r, then each of
these satisfies

(7) gh — rh = (),

and then the set of all zeros of f.(z) is carried inio itself by a rolation of
the complex plane through an angle 2w /h. Finally, the number r is pre-
cisely given by

: (Ctx);
(8) r = min max .
220 13{Sn x;
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Replacing C* by its transpose in (8) and carrying out the multipli-
cation indicated we deduce

THEOREM 2. The number

Op—g | X X
(9) r = min max { —t m} ; (#ag1 = 0),
;g0 135iZe On X Xy
is the real, positive, dominant root of (6), and hence if 2 is a zero of f(2)
in (2), and xy, - + + , x, are arbitrarily chosen positive numbers, we have
an—g |4 Xy
(10) | 2] £ max { -t ‘*}, (nsr = 0).
132{5n n 1% Xi
3. Some applications.
Taking x;=1 (=1, - + -, n), we get
Gn @n— a a9
(11) |E[ Emn{l_j‘_i_l: : +1:'r|_1'|+1:_}
ay [P L an

due to Cauchy [2].
With x;= lﬂ.._¢+1fa,,| %y (i=1, - -+, n), there results

&y a Cp—
(12) |=|5max{—|,2—’,---,2 ‘}
a1 as dn
due to Kojima [2].
Next, with x;=p' (=1, - - -, n; p>0),
(i Gn—z| 1 a1 1 ao] 1
| 2] émax{ 1+,u:l+,| 2‘—4—#,"',‘“1 el - _]}
s | p Gnlp™ @sl p"
(13)
< p + max { Tt p‘“‘”}, (p > 0),
15{5n an

which also results from (11) by considering f(z/p). If p 1s chosen so as
to make the two terms above equal, we find

@i |/

Gn

(14) 2| = 2 max
15150

due to Fujiwara [2]. It is easy to see, however, that better choices of
p can be made.

As a final application of the same idea, let {¢a(x)} be a sequence
of orthogonal polynomials on a real interval, normalized, and also
standardized so that the leading coefficient k. of ¢a(x) i8 positive.
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Then

(15) xpn(%) = Badpu—_1(¥) + Bry1¢ns1(®) + Audal()

where

(16) By = kar/kx > 0 (n=1,2,---).

It is well known that the zeros of ¢,.(x) are the eigenvalues of the
symmetric Jacobi matrix

(ds B ‘
-Bl Al Bg ﬂ
Bs Ag-+ -
(1?) J — 2 2
0 . . _Bn_.l
l Hn—l An—l,
Hence if we have
(13} A,gﬂ', {n:ﬂ,lji..}’

the matrix J is nonnegative and irreducible, and if x,, denotes the
largest zero of ¢.(x) we find, as before,

. Bin
Ton = MID  mMax Bipi + A; +
el 0Eisn—1 Pig1

(19)

Byt

= max min {B;m + A; + } ,  (po=1,ps = 0).

g0 0=2158—1 il

Again, various two-sided inequalities result from simple choices of
the p;, which in several familiar special cases correctly reproduce the
first term of the asymptotically best inequalities. The upper bound
given by (19) when all p;=1 is a theorem of Shohat [3].
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